Quantum Schur–Weyl duality and link invariants

Johannes Flake

Rutgers University

Graduate Algebra and Representation Theory Seminar
November 2017

1Happy to hear your questions or comments!
Quantum Schur–Weyl duality and link invariants

Outline

1 Quantum Schur–Weyl duality

2 Link invariants

3 An example
Representation categories of Lie algebras

\(g \): a Lie algebra over \(\mathbb{F} \)

\(\text{Rep} \): the category of (finite dimensional) representations

- \(\mathbb{F} \in \text{Rep} : \)
 \[
 xr = 0 \quad \forall r \in \mathbb{F}, x \in g .
 \]

- \(M, N \in \text{Rep} \Rightarrow M \otimes N \in \text{Rep} : \)
 \[
 x(m \otimes n) = xm \otimes n + m \otimes xn \quad \forall m \in M, n \in N .
 \]

- \(M \in \text{Rep} \Rightarrow M^* = \text{Hom}_{\mathbb{F}}(M, \mathbb{F}) \in \text{Rep} : \)
 \[
 xf = -f(x \cdot) \quad \forall f \in M^* .
 \]

“−” implies:
\(M \otimes M^* \rightarrow \mathbb{F} \) is a morphism in \(\text{Rep} \), i.e., a \(g \)-module map
Associative algebras are nicer than Lie algebras...

\[U = U(\mathfrak{g}) : \text{the universal enveloping algebra of } \mathfrak{g} \text{ (associative } + 1), \]
\[U = T(\mathfrak{g})/(xy - yx - [x, y]) ; \text{generated by } \{x\}_{x \in \mathfrak{g}} \text{ with relations} \]
\[xy - yx = [x, y] \ \forall x, y \in \mathfrak{g}. \]

⇒ Rep = the category of (finite-dimensional) U-modules

We have algebra maps \(\varepsilon : U \to \mathbb{F}, \Delta : U \to U \otimes U, S : U \to U \)
defined on the generators \(\{x\}_{x \in \mathfrak{g}} \) by
\[\varepsilon(x) = 0, \quad \Delta(x) = x \otimes 1 + 1 \otimes x, \quad S(x) = -x \]
such that:
\[\mathbb{F} \in \text{Rep} : ur = \varepsilon(u)r \ \forall u \in U \]
\[M \otimes N \in \text{Rep} : u(m \otimes n) = \Delta(u)(m \otimes n) \]
\[M^* \in \text{Rep} : uf = f(S(u) \cdot) \]
Algebras with additional structure maps ε, Δ, S as above satisfying certain axioms are called **Hopf algebras**. Their representation categories are **rigid monoidal** categories (“they have duals and tensor products”).

⇒ \mathcal{U} is a Hopf algebra

∀ vector spaces V, W: $\tau_{V,W}: V \otimes W \rightarrow W \otimes V$, $v \otimes w \mapsto w \otimes v$.

⇒ $\Delta = \tau_{\mathcal{U},\mathcal{U}} \circ \Delta$ (⇔: \mathcal{U} is cocommutative)

⇔ Rep is **symmetric monoidal** with the symmetric braiding τ: ∀ $M, N \in$ Rep, $\tau_{M,N}$ gives an isomorphism in Rep and $\tau^2 = \text{id}$.

Caution: Cocommutative Hopf algebras / symmetric monoidal categories are a special case!
Endomorphisms of tensor powers

We fix a module $M \in \text{Rep}$ and $n \geq 1$.

$\Rightarrow M^\otimes n \in \text{Rep}$ and we have an algebra map
$\phi (= \Delta^{n-1}) : \mathcal{U} \rightarrow \text{End}(M^\otimes n)$

$s_i := \text{id}^\otimes(i-1) \otimes \tau_{M,M} \otimes \text{id}^\otimes(n-i-1) : M^\otimes n \rightarrow M^\otimes n$ for $1 \leq i < n$

- $\psi : S_n \rightarrow \text{GL}(M^\otimes n), (i \ i + 1) \mapsto s_i$ defines a group homo.
 $(s_i^2 = \text{id}, s_i s_j s_i = s_j s_i s_j$ if $|i - j| = 1, s_i s_j = s_j s_i$ if $|i - j| > 1)$

- So we have an algebra map $\psi : \mathbb{F}[S_n] \rightarrow \text{End}(M^\otimes n)$.

- For all $u \in \mathcal{U}$ and all i: $\phi(u), \psi(s_i)$ commute!

$\Rightarrow \phi(\mathcal{U}), \psi(\mathbb{F}[S_n])$ are commuting algebras in $\text{End}(M^\otimes n)$

$\mathbb{F}[G]$ is the algebra gen. by $\{e_g\}_{g \in G}$ with rel.s $e_g e_h = e_{gh}$.

Let’s specialize to $\mathfrak{gl}_d(\mathbb{C})$

Let us specialize $\mathbb{F} = \mathbb{C}$, $\mathfrak{g} = \mathfrak{gl}_d(\mathbb{C})$, $M = \mathbb{C}^d$ for $d \geq 1$.

Schur–Weyl duality

$\phi(\mathcal{U}(\mathfrak{gl}_d)), \psi(\mathbb{C}[S_n])$ are (full!) commutators of each other in $\text{End}((\mathbb{C}^d)^{\otimes n})$.

As a corollary, $(\mathbb{C}^d)^{\otimes n} = \bigoplus_\lambda V_\lambda \otimes W_\lambda$ for pairwise non-isomorphic irreducible \mathfrak{gl}_d-modules V_λ / S_n-modules W_λ.

More concretely, $\{\lambda\}$ can be taken to be the set of partitions of n with at most d parts. (Equivalently, partitions of n with all parts being at most d.)
Quantization

For \(q \in \mathbb{C} \setminus \{0, 1\} \), \(\mathcal{U}_q = \mathcal{U}_q(gl_d) \) is a Hopf algebra deformation of \(\mathcal{U} = \mathcal{U}(gl_d) \) such that \(\mathcal{U}_q \to \mathcal{U} \) as \(q \to 1 \).

\(\mathcal{U}_q \) (still) has \(\mathbb{C}^d \) as a natural standard module.

The representation category \(\text{Rep}_q \) is rigid monoidal, but not symmetric anymore. \(S_n \) does not act on \((\mathbb{C}^d)^{\otimes n} \).

There is still a braiding \(c_{M,N} : M \otimes N \to N \otimes M \) for \(M, N \in \text{Rep}_q \) with \(c^2 \neq \text{id} \) generally.

\(\text{Rep}_q \) is (still) a ribbon category: it has tensor products, duals, a braiding and twists, and they are compatible.
Quantum Schur–Weyl duality

\[S_n = \text{group generated by } s_1, \ldots, s_{n-1} \text{ and relations:} \]
\[s_i^2 = 1, \quad s_i s_j s_i = s_j s_i s_j \text{ if } |i - j| = 1, \quad s_i s_j = s_j s_i \text{ if } |i - j| > 1 \]

braid relations

\[U(\mathfrak{gl}_d) \xrightarrow{\phi} \text{End}((\mathbb{C}^d)^\otimes n) \xleftarrow{\psi} \mathbb{C}[S_n] \]

double centralizer

braid group \(B_{n} = \text{group generated by } \sigma_1, \ldots, \sigma_{n-1} \) with braid relations

Hecke algebra \(H_{q,n} = \mathbb{C}\text{-algebra generated by } T_1, \ldots, T_{n-1} \) with braid relations and \((T_i + q)(T_i - q^{-1}) = 1\)
Outline

1 Quantum Schur–Weyl duality

2 Link invariants

3 An example
Braids and links – Alexander

(Oriented) link := finite collection of smoothly embedded (oriented) circles in 3-space

Alexander’s theorem

(Oriented) links are closures of (oriented) braids.
We fix $M \in \text{Rep}_q$.

- $\mathbb{C}[\text{Br}_n] \to \text{End}(M \otimes^n)$, braid \mapsto endomorphism
- closing the braid \leftrightarrow taking the trace

Reshetikhin–Turaev

The ribbon category Rep_q yields link invariants in this way.
Braids and links – Markov

\[\frac{\{\text{links}\}}{\text{isotopy}} \leftrightarrow \frac{\{\text{braids}\}}{\text{conjugations, Markov moves}} \]

(*)
Link invariants from Hecke algebras

knots \rightarrow braids $\rightarrow \bigcup_{n \geq 1} \mathbb{C}[\text{Br}_n] \rightarrow \mathcal{H}_q := \bigcup_{n \geq 1} \mathcal{H}_{q,n}$

A linear map $\text{Tr} : \mathcal{H}_q \rightarrow \mathbb{C}$ is called normalized Markov trace with parameter $z \in \mathbb{C}$

$\Leftrightarrow \text{Tr}(1) = 1, \quad \text{Tr}(ab) = \text{Tr}(ba), \quad \text{Tr}(M(b)) = z \text{Tr}(b)$

for all $a, b \in \mathcal{H}_q$, where $M(b)$ is the modification of b according to the Markov move.

Ocneanu

For all q, z, there is a unique normalized Markov trace.

Jones

Every normalized Markov trace yields an invariant for oriented links. Ocneanu’s trace yields the two-parameter HOMFLYPT polynomial.
Outline

1 Quantum Schur–Weyl duality

2 Link invariants

3 An example
The Temperley–Lieb algebra

For $d = 2$, the image of $\mathbb{C}[\text{Br}_n] \rightarrow \text{End}((\mathbb{C}^2)^\otimes n)$ is...

Temperley–Lieb algebra $\text{TL}_n(\delta)$ generated by u_1, \ldots, u_{n-1} with the relations:

\[u_i^2 = \delta u_i, \quad u_i u_j u_i = u_i \text{ if } |i - j| = 1, \quad u_i u_j = u_j u_i \text{ if } |i - j| > 1. \]

Graphically, u_i corresponds to $\cdots \bigcirc \bigcirc \cdots$ and composition corresponds to stacking diagrams ("crossingless matchings"), where circles are evaluated to δ.

E.g.,

\[u_i u_{i+1} u_i = \cdots \bigcirc \bigcirc \cdots = \cdots \bigcirc \bigcirc \cdots = u_i \]
Quantum Schur–Weyl duality and link invariants

An example

Braids and the Temperley–Lieb algebra

For any $\nu \in \mathbb{C}$, we have a group homomorphism $\eta: \text{Br}_n \to \text{TL}_n(\delta)$ sending $\sigma_i \mapsto \nu u_i + \nu^{-1}$, i.e.,

$$
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{braids.png}
\end{array}
\mapsto \nu \includegraphics[width=0.2\textwidth]{tangles.png} + \nu^{-1}
$$

for $\delta = -\nu^2 - \nu^{-2}$.

Pf.: By graphical calculus, e.g.,

$$
(\nu \includegraphics[width=0.2\textwidth]{braids.png} + \nu^{-1} | |) (\nu^{-1} \includegraphics[width=0.2\textwidth]{braids.png} + \nu | |) = \includegraphics[width=0.2\textwidth]{tangles.png} + \nu^2 \includegraphics[width=0.2\textwidth]{tangles.png} + \nu^{-2} \includegraphics[width=0.2\textwidth]{tangles.png} + | | =
$$

$$(\delta + \nu^2 + \nu^{-2}) \includegraphics[width=0.2\textwidth]{braids.png} + | | = | | \Rightarrow \eta \left(\includegraphics[width=0.2\textwidth]{braids.png} \right) = \nu^{-1} \includegraphics[width=0.2\textwidth]{tangles.png} + \nu | |
$$

$$
\eta \left(\includegraphics[width=0.2\textwidth]{braids.png} \right) = \eta \left(\nu^{-1} \includegraphics[width=0.2\textwidth]{braids.png} + \nu \includegraphics[width=0.2\textwidth]{tangles.png} \right) = \eta \left(\nu^{-1} \includegraphics[width=0.2\textwidth]{tangles.png} + \nu \includegraphics[width=0.2\textwidth]{tangles.png} \right) =
$$

$$
... = \eta \left(\includegraphics[width=0.2\textwidth]{braids.png} \right) ...
$$
Always trouble with the Markov move

But: Above assignment is **not** invariant under the Markov move!

Recall $\delta = -\nu^2 - \nu^{-2}$:

\[
\begin{align*}
\begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} & \mapsto \nu \begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} + \nu^{-1} | 0 = (\nu + \nu^{-1}\delta^2) | = -\nu^{-3} |, \\
\begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} & \mapsto \nu^{-1} \begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} + \nu | 0 = -\nu^3 |.
\end{align*}
\]

We obtain an assignment invariant under the Markov move by passing to **oriented** links and letting

\[
\begin{align*}
\begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} & \mapsto -\nu^\pm 3 \begin{array}{c}
\begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} + \nu^\mp 1 | |
\end{array}
\end{align*}
\]

Now both \(\begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} \) and \(\begin{array}{c}
\tikz[baseline=-.75ex]
\draw (-.25,-.25) -- (-.25,.25)
\draw (.25,-.25) -- (.25,.25)
\end{array} \) are mapped to \(| | \).
Link invariants from the Temperley–Lieb algebra

We define the trace $\text{Tr} : \text{TL}_n(\delta) \to \mathbb{C}$ by “closing the diagram”

$$\text{Tr}(d) = d$$

where each circle gets evaluated to δ.

Let $q := -\nu^{-2}$. Recall $\delta = -\nu^2 - \nu^{-2} = q + q^{-1}$.

The Markov invariant assignment together with the trace map define an invariant J for oriented links with normalization $J(\bigcirc) = \delta = q + q^{-1}$ and skein relation

$$q^2 J(\bigtriangledown) - q^{-2} J(\bigtriangledown) = (q - q^{-1}) J(\uparrow\uparrow).$$

This is the Jones polynomial (up to the normalization)!
There is a family of invariants \((P_n)_{n \geq 0}\) with skein relation
\[q^n P_n(\underbrace{\quad \quad}) - q^{-n} P_n(\underbrace{\quad \quad}) = (q - q^{-1}) P_n(\uparrow \uparrow) \]
and the normalization \(P_n(\bigcirc \bigcirc) = \frac{q^n - q^{-n}}{q - q^{-1}}\).

\(P_0 = \text{Alexander polynomial, } P_1 \equiv 1, P_2 = \text{Jones polynomial, ...}\)

- All of these can be obtained from quantum groups, too.
- The HOMFLYPT polynomial is a 2-parameter generalization.
- The HOMFLYPT polynomial is not a complete invariant.
- Categorification \(\Rightarrow\) HOMFLYPT is the Euler characteristic of “Khovanov’s triply graded link homology”.
References

